

Telemesh Documentation

	1. Background

	2. Project’s Goal

	3. Features

	4. Project’s Structure

	5. Telemesh Deployment
	5.1. Parse deployment

	6. Get started

	7. Project Dependencies

	8. Development Guideline
	8.1. Viper

	8.2. Telemesh

	9. Create branch

	10. Local development environments

	11. Development Prerequisites
	11.1. Android Core

	11.2. User Interface

	11.3. Data Management

	11.4. Testing

1. Background

Globally, 68.5 million people are forcibly displaced at the time of
writing this readme, and over 25.4 million are refugees. In Bangladesh,
there are over 650,000 Rohingya refugees who have fled violence, mass
killings and sexual abuse from neighboring Myanmar.2 Of those, nearly
60% are children, many of whom are orphaned Distributing information
about humanitarian services to large numbers of refugees poses
significant challenges for NGOs like UNICEF. While 40% of rural refugee
households have smartphones, many are unconnected due to a lack of or
poor telecommunications infrastructure or unaffordable cellular costs.
The UNHCR believes that connecting refugees would ultimately transform
humanitarian operations.

2. Project’s Goal

We intend to make use of mesh network. It allows for multi-hop,
peer-to-peer connectivity directly between smartphones, instead of
relying on internet and cell networks. Blockchain is used in the network
to uniquely identify each node (smartphone) providing a trust layer to
users without centralized signup. It also provides the infrastructure
for users to connect multiple separate meshes by sharing an internet
connection in exchange for ERC20 tokens. This offers an entirely new and
unique method of information distribution not possible with existing
technology.

For UNICEF, we plan to develop an open source messaging app to be tested
in refugee camps, specifically, Cox’s Bazar, Bangladesh. A broadcast
channel would allow UNICEF to push vital information to smartphone users
about services like vaccination clinics, maternity clinics and schools.
The app would also allow refugees to message one another even if they do
not have a SIM card or cellular data.

[image: telemesh ecosystem]

3. Features

	User discovery in local mesh

	One to one messaging

	Message broadcast

	In app sharing

	Crypto wallet

	Mobile data buy and sell

4. Project’s Structure

.
|-- app
|-- src
|-- main
 |-- com.w3engineers.unicef
 |-- telemesh
 |-- data #local database, file, shared preferences etc.
 |-- ui #ui components
 |-- util
 |-- helper #Generic tasks like TimeUtil, NetworkUtil etc.
 |-- lib #third party library, component etc.
 |-- Application.java #Android Application class
|-- viper #W3Engineers wrapper module
|-- appshare #W3Engineers in app share module
|-- localserver #W3Engineers in app update module
|-- build.gradle
|-- settings.gradle
|-- versions.gradle
|-- gradle.properties

	Alias N/A

	Commands N/A

5. Telemesh Deployment

After cloning the Telemesh github repo in your local machine it is effortless to build the Telemesh app.

Actually, The Telemesh app is using different URLs for different services. Preparing all those services is time-consuming as well as tedious too for outsiders.

Here if you want to simply deploy / build the Telemesh app, you don’t need to worry at all about those tasks.

All the URLs and other permission related information are provided in a .so file as solid package to give you a staging environment the same as production for deployment purposes.

Just download the project and run.

But, we don’t give the guarantee of continuous services for the staging environment, as it’s only for deployment purposes.

After successful build, install the apk into any Android device (minimum android version Lollipop - 5.0)

and you need to download TeleService apk from Telemesh inside which will provide multihop mesh support into Telemesh.

5.1. Parse deployment

In Telemesh we are using Parse server to store analytics data from local mesh.

Please follow this Parse [https://docs.parseplatform.org/android/guide/] installation process in Android.

To configure parse with Telemesh, follow the steps are given below:

Step 1: Add parse server Android SDK version in version.gradle

Step 2: If you want to deploy your own parse server in any platform, you have to update parse server URL and parse server APP-ID in the Telemesh project.

Step 3. You have to add the PARSE_URL and PARSE_APP_ID in the GradleBuildValues interface that located in Constants class.

Parse Server installation Inside a Docker container

$ git clone https://github.com/parse-community/parse-server
$ cd parse-server
$ docker build --tag parse-server .
$ docker run --name my-parse-server -p 1337:1337 -d parse-server --appId APPLICATION_ID --masterKey MASTER_KEY --databaseURI mongodb://mongo/test

If you need any help on any stage of your deployment and you want to communicate with us please join our Discord [https://discord.gg/SHG4qrH] channel or communicate to our community manager
through [media@telemesh.net] & [info@telemesh.net].

6. Get started

Step 1: Clone repository: Navigate to directory where you want to
keep source code. Open command prompt.

Execute below command:

git clone https://github.com/w3-engineers/telemesh.git

Here you will get how to install Git and start contribute to Open source [https://www.digitalocean.com/community/tutorial_series/an-introduction-to-open-source]

For more details please follow the Telemesh Development Guideline

Also you can use the following communication methods

	The #get-help channel on our Discord chat [https://discord.gg/SHG4qrH]

	The mailing list [media@telemesh.net] for long term discussion.

Step 2: Sync and build: If everything is ok then sync and build
should work as it should be.

Step 3: Test on device:

Minimum API: 21 (Lollipop - 5.0)

7. Project Dependencies

Telemesh project has a dependency on wireless Mesh technology [https://en.wikipedia.org/wiki/Mesh_networking] and Blockchain Technology [https://blockgeeks.com/guides/what-is-blockchain-technology/]

This project has core dependency on another open-source project Viper [https://github.com/w3-engineers/viper] which will
provide support for Mesh and Blockchain functionalities and expose set of api to ease development work.
Please follow the Viper Guideline

8. Development Guideline

	8.1. Viper
	8.1.1. Viper Introduction

	8.1.2. Dependency

	8.1.3. UI/UX Support

	8.1.4. Mesh Support

	8.1.5. Wallet Support

	8.1.6. Data plan Support

	8.2. Telemesh

8.1. Viper

	8.1.1. Viper Introduction

	8.1.2. Dependency

	8.1.3. UI/UX Support

	8.1.4. Mesh Support

	8.1.5. Wallet Support

	8.1.6. Data plan Support

8.1.1. Viper Introduction

Viper is the android library that acts as a communication bridge between
Telemesh Android Application and Telemesh Service.
It is responsible for coordinating the actions to the Telemesh Service.
It can also perform some mappings to prepare the objects coming from the Android Application.

It provides few supports on ui/ux to ease developers daily development.
Also it provides set of api for mesh support and wallet support.
Currently Telemesh ui design use those supports from Viper.

8.1.2. Dependency

Include the library in app level build.gradle of Telemesh

dependencies{
 implementation 'com.github.w3-engineers:viper:<version_number>'
}

8.1.3. UI/UX Support

We all do many activities which are common to the most of the screens. Most famous are

	Design on Toolbar

	Recycler view clicklistener

	Manage empty view on recycler view

We don’t think its wise to write all the component each time we want to design the screen
since these components need to be consistent on all screen.
Even if you able to achieve it by separate implementation consistency is difficult to achieve and it’s not good idea to write this for each screen.
It’s at this point where we can think of moving this implementation to the Base class/ BaseActivity.

Viper provides below supports

	Custom components (BaseActivity, BaseFragment, BaseAdapter etc.)

	Custom Widgets (BaseButton, BaseRecyclerView, BaseEditText etc.)

	BaseToolBar provides title to Toolbar and action for back button

	Close Coupled Behavior with Widget and Components

	Few configurable options (debugDatabase, Toasty etc.Still we are improving here)

	Enhanced support for Room (migration, creation of database, columns etc.)

	Necessary library added such a way so that developers can use without including in their gradle file (Timber, Multidex, Crashlytics, Debug Database etc.)

	BaseSplashViewModel provides time calculation facility and enforce ViewModel LiveData communication

BaseRecyclerView

BaseRecyclerView is a wrapper class of android RecyclerView

<RelativeLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <TextView
 android:id="@+id/empty_layout"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerInParent="true"
 android:text="No data found"
 android:visibility="gone" />

 <com.w3engineers.ext.strom.application.ui.widget.BaseRecyclerView
 android:id="@+id/rv"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:brv_defaultAnimation="false"
 app:brv_emptyLayoutId="@id/empty_layout" // Empty View id. This is mandatory field
 app:brv_viewMode="vertical" />

 </RelativeLayout>

	app:brv_emptyLayoutId="@id/empty_layout" This is compulsory filed
if it does’t set then you will get Runtime exception

	app:brv_viewMode="vertical" indicate how the RecyclerView scroll
horizontally or vertically

	app:brv_defaultAnimation="false" Mark default animation enable or
disable

BaseAdapter

BaseAdapter is a generic RecyclerView adapter which is capable to work
with all types of data model.

Example

public class ExampleAdapter extends BaseAdapter<User> {
 @Override
 public boolean isEqual(User left, User right) {
 return false;
 }

 @Override
 public BaseAdapterViewHolder newViewHolder(ViewGroup parent, int viewType) {
 return null;
 }
}

Child class needs to implement isEqual() and newViewHolder() methods.
No needs to override onBindViewHolder()

BaseToolBar

activity_home.xml

<com.w3engineers.ext.strom.application.ui.base.BaseToolBar
 android:id="@+id/home_toolbar"
 ...
 app:showHomeButton="true" // this will show toolbar home button
 app:customTitle="@string/app_name" // this will show toolbar title
 >
</com.w3engineers.ext.strom.application.ui.base.BaseToolBar>

HomeActivity.java

@Override
 protected int getToolbarId() {
 return R.id.home_toolbar;
 }

BaseButton:

BaseButton is a custom View class. You can design any types of Button
with and without image, round corner and there are various properties
with it.

-app:bb_drawable="@drawable/button_gradient_blue" is a mandatory
field. If developer does not set this property it may causes Runtime
exception

<com.w3engineers.ext.strom.application.ui.widget.BaseCompositeButton
 android:id="@+id/btn_facebook_like"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginBottom="10dp"
 android:padding="10dp"
 android:textStyle="italic"
 app:btn_borderColor="#FFFFFF"
 app:btn_borderWidth="1dp" // Button border width
 app:btn_defaultColor="#3b5998"
 app:btn_focusColor="#5577bd" // When click show this focus color
 app:btn_fontIconSize="15sp"
 app:btn_iconPosition="right" // Icon position (left, right, top, bottom)
 app:btn_iconResource="@drawable/facebook"
 app:btn_radius="30dp" // Button corner radious
 app:btn_text="Like my facebook page"
 app:btn_disabledBorderColor="@color/colorAccent"
 app:btn_disabledTextColor="@color/colorAccent"
 app:btn_disabledColor="@color/colorAccent"
 app:btn_textGravity="start"
 app:btn_iconColor="@color/colorAccent"
 app:btn_textColor="#FFFFFF" />

Till now nothing is mandatory, there are so many options here. This
custom class will support for all types of button.

BaseEditText:

BaseEditText is a custom EditText wrapper, using this class it is
possible to design EditText with and without label max, min char length
and there are various options with it.

<com.w3engineers.ext.strom.application.ui.widget.BaseEditText
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginLeft="10dp"
 android:hint="Floating Label"
 app:bet_floatingLabel="highlight"
 app:bet_maxCharacters="10" // Max character size
 app:bet_minCharacters="2" // Min character size
 app:bet_autoValidate="true"
 app:bet_floatingLabelAlwaysShown="false"
 app:bet_checkCharactersCountAtBeginning="true"
 app:bet_baseColor="@color/colorAccent"
 app:bet_floatingLabelTextSize="20sp"
 app:bet_hideUnderline="true"
 app:bet_helperText="Helper" // If it needs to help user provide some example
 app:bet_helperTextAlwaysShown="true"
 app:bet_helperTextColor="@color/colorAccent"
 app:bet_primaryColor="@color/accent"/>

Use this class and its necessary properties.

BaseButton

<com.w3engineers.ext.strom.application.ui.widget.BaseButton
 android:id="@+id/btn_show_items"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="10dp"
 android:text="@string/show_data"
 android:padding="10dp"
 app:layout_constraintTop_toBottomOf="@+id/btn_add_item"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:bb_drawable="@drawable/button_gradient_blue"/>

BaseDialog

Base dialog is a custom dialog class, which force developer to set a
layout file for custom design

protected abstract int getLayoutId();
protected abstract void startUi();

Are the two methods needs to child class implement.

DialogUtil

There are three overloading static methods here

public static void showDialog(Context context, String message, DialogListener listener)
public static void showDialog(Context context, String title, String message, DialogListener listener)
public static void showDialog(Context context, String title, String message, String positiveText, String negativeText, final DialogListener listener)

Developer can call any one as his/her needs. It will show a default dialog

ItemClickListener:

public interface ItemClickListener<T> {
 /**
 * Called when a item has been clicked.
 *
 * @param view The view that was clicked.
 * @param item The T type object that was clicked.
 */
 void onItemClick(View view, T item);
}

Implement this interface in UI (Activity or Fragment) pass its reference
to the Adapter

ItemLongClickListener

public interface ItemLongClickListener<T> {
 /**
 * Called when a item has been long clicked.
 *
 * @param view The view that was clicked.
 * @param item The T type object that was clicked.
 */
 void onItemLongClick(View view, T item);
}

For item long click listener implement this interface in UI (Activity or
Fragment) and pass its reference to adapter

8.1.4. Mesh Support

To receive EVENTS from MeshService following Events are observed on Telemesh app end at ViperUtil.java class inside the package com.w3engineers.unicef.util.helper.

ApiEvent.TRANSPORT_INIT - After initializing mesh service this event provide mesh initialization state with own user/peer id

ApiEvent.WALLET_LOADED - After successfully wallet get loaded this event provide wallet status

ApiEvent.PEER_ADD - This event provide the new peer id when another user/peer get discovered through local mesh

ApiEvent.PEER_REMOVED - This event provide the remove peer id when user/peer get removed from local mesh

ApiEvent.DATA - This event provide the received data in byte array format

ApiEvent.DATA_ACKNOWLEDGEMENT - This event provide the send data/message acknowledgment status with message-id

ApiEvent.USER_INFO - This event sends the connected peer’s info like peer name, peer image index, etc.

private void initObservers() {

 AppDataObserver.on().startObserver(ApiEvent.TRANSPORT_INIT, event -> {
 TransportInit transportInit = (TransportInit) event;

 if (transportInit.success) {
 myUserId = transportInit.nodeId;

 onMesh(myUserId);
 }
 });

 AppDataObserver.on().startObserver(ApiEvent.WALLET_LOADED, event -> {
 WalletLoaded walletLoaded = (WalletLoaded) event;

 if (walletLoaded.success) {
 onMeshPrepared();
 }
 });

 AppDataObserver.on().startObserver(ApiEvent.PEER_ADD, event -> {
 PeerAdd peerAdd = (PeerAdd) event;
 peerDiscoveryProcess(peerAdd.peerId, true);
 });

 AppDataObserver.on().startObserver(ApiEvent.PEER_REMOVED, event -> {
 PeerRemoved peerRemoved = (PeerRemoved) event;
 peerDiscoveryProcess(peerRemoved.peerId, false);
 });

 AppDataObserver.on().startObserver(ApiEvent.DATA, event -> {

 DataEvent dataEvent = (DataEvent) event;

 dataReceive(dataEvent.peerId, dataEvent.data);
 });

 AppDataObserver.on().startObserver(ApiEvent.DATA_ACKNOWLEDGEMENT, event -> {

 DataAckEvent dataAckEvent = (DataAckEvent) event;

 onAck(dataAckEvent.dataId, dataAckEvent.status);

 });

 AppDataObserver.on().startObserver(ApiEvent.USER_INFO, event -> {

 UserInfoEvent userInfoEvent = (UserInfoEvent) event;

 UserModel userModel = new UserModel().setName(userInfoEvent.getUserName())
 .setImage(userInfoEvent.getAvatar())
 .setTime(userInfoEvent.getRegTime());

 peerAdd(userInfoEvent.getAddress(), userModel);
 });

 }

To receive data from Viper to Telemesh Android app following abstract methods are used on Telemesh app end at MeshDataSource.java class inside the package com.w3engineers.unicef.telemesh.data.helper.

protected abstract void onMesh(String myMeshId) - When observer receive ApiEvent.TRANSPORT_INIT EVENT then this method get called.

protected abstract void peerAdd(String peerId, byte[] peerData) - When observer receive ApiEvent.DATA EVENT then this method get called.

protected abstract void peerAdd(String peerId, UserModel userModel) - When observer receive ApiEvent.USER_INFO EVENT then this method get called.

protected abstract void peerRemove(String nodeId) - When observer receive ApiEvent.PEER_REMOVED EVENT then this method get called.

protected abstract void onData(String peerId, ViperData viperData) - When observer receive ApiEvent.DATA EVENT then this method get called.

protected abstract void onAck(String messageId, int status) - When observer receive ApiEvent.DATA_ACKNOWLEDGEMENT EVENT then this method get called.

protected abstract boolean isNodeAvailable(String nodeId, int userActiveStatus) - To check whether the user/peer is currently active/online

8.1.5. Wallet Support

public static WalletManager getInstance() - returns the WalletManager singleton object.

public boolean hasSeller() - returns if user is connected to any seller type user.

public String getMyAddress() - returns user’s wallet address.

public int getMyEndpoint() - returns user’s current blockchain network endpoint value.

public boolean isGiftGot() - returns if user already has received the gift point and ether by airdrop.

public void setWalletListener(WalletListener walletListener) - set WalletListener from your wallet activity to receive various events

public static void openActivity(Context context, byte[] picture) - if you want to use the default wallet activity, calling this method will do that. @params: 1. Context: activity context, 2. byte[]: picture you walt to show in the default wallet page.

public boolean giftEther() - call this method to initialize point and ether gift process. If user is capable of getting gift, will get it.

public void setEndpoint(int endpoint) - call this method to set different blockchain network endpoint value (this is related to configuration file provided by application end initially)

public void refreshMyBalance() - call this method to refresh balance.

public void getAllOpenDrawableBlock() - call to withdraw pending balances stored in the channel.

public LiveData<Double> getTotalEarn(String myAddress, int endPoint) - observe this to get total earning live data by user

public LiveData<Double> getTotalSpent(String myAddress, int endPoint) - observe this to get total spent live data by user

public LiveData<Double> getTotalPendingEarning(String myAddress, int endPoint) - observe this to get pending earning(stored in microraiden channel) live data by seller

public Flowable<List<NetworkInfo>> getNetworkInfoByNetworkType() - observe this to get balance change, blockchain network information change.

public void createWallet(Context context, String password, WalletCreateListener listener) - This api is used to create wallet. Call this the user is totally new.

public void loadWallet(Context context, String password, WalletLoadListener listener) - This api is used to load wallet for a returning user, provided that wallet file already exists in the system.

public void importWallet(Context context, String password, Uri fileUri, WalletImportListener listener) - This api is used to import wallet, provided that user already has a wallet file of his/her own created from other source.

public interface WalletCreateListener {
 ``void onWalletCreated(String walletAddress, String publicKey)`` - called when wallet is created.
 ``void onError(String message)`` - called when there is an error
}

public interface WalletLoadListener {
 ``void onWalletLoaded(String walletAddress, String publicKey)`` - called when wallet is loaded.
 ``void onError(String message)`` - called when there is an error
}

public interface WalletImportListener {
 ``void onWalletImported(String walletAddress, String publicKey)`` - called when wallet is imported.
 ``void onError(String message)`` - called when there is an error
}

public interface WalletListener {
 ``void onGiftResponse(boolean success, boolean isGifted, String message)`` - called at various steps in ether and point gift process.
 ``void onBalanceInfo(boolean success, String msg)`` - called when refresh balance response received

}

8.1.6. Data plan Support

public static DataPlanManager getInstance() - returns DataPlanManager singleton object

public int getDataPlanRole() - returns user role

public long getSellAmountData() - returns amount of data user wnts to share.

public int getDataAmountMode() - returns whether shared data is limited or unlimited.

public long getSellFromDate() - returns timestamp from when data selling starts.

public long getSellDataAmount() - returns value of data amount what user set for limited data plan.

public long getRemainingData() - returns remaining amount of data shared by seller.

public long getUsedData(Context context, long fromDate) - returns used data amount from specific timestamp.

public static void openActivity(Context context, int imageValue) - call this method to open default dataplan activity.

public static void resumeMessaging() - call this method to resume seller side functionality to help buyer messaging.

public void closeMesh(int role) - call this method to stop mesh communication.

public void roleSwitch(int newRole) - call this method to switch user role

public void setSellFromDate(long fromDate)- call this method to set data selling starting timestamp.

public void setDataAmountMode(int mode) - call this method to set user choise for data sharing limited/unlimited, value 1 for limited and 0 for unlimited.

``public void setSellDataAmount(Long sharedData) `` - call this method to set data sell amount in MB

public void closeAllActiveChannel() - call this method to close all active channel by seller.

public void initPurchase(double amount, String sellerId) - call this method to purchase data in MB from seller.

public void closePurchase(String sellerId) - call this method to close any purchased channel by buyer.

public void processAllSeller(Context context) - call this method to process the connected seller list in UI by buyer.

public void setCurrentSeller(Context context, String sellerId, String currentSellerStatus) - call this method to set status of the seller.

public void precessDisconnectedSeller(Context context, String sellerId) - call this method to process disconnected seller from list.

public void setDataPlanListener(DataPlanListener dataPlanListener) - set DataPlanListener from dataplan activity.

public Flowable<List<Seller>> getAllSellers() - observe this to get any change in connected seller list

8.2. Telemesh

	Find the versions.gradle in the Telemesh root directory of the repo and
any new support library reference should be added here.

	Any support library on app-level build.gradle should be added in
this way

implementation deps.support.app_compat
implementation deps.support.design
implementation deps.constraint_layout
implementation deps.support.recyclerview
implementation deps.support.cardview

	Viper dependency should be added in the same way inside the app-level build.gradle

	The Telemesh app is using different URLs for different services. Preparing all those services is time-consuming as well as tedious too. But if you are a contributor to Telemesh app, you don’t need to worry at all about those monotonous tasks. All the URLs and other permission related information are provided in a .so file as solid package to give you a staging environment the same as production for development purposes. Just download the project and run.

But, we don’t give the guarantee of continuous services for the staging environment, as it’s only for development and testing purposes.

	If you want to deploy your server machines and services you need to do a little more work. Assuming that you already have the services installed on the online machine(s), please follow the steps below.

	If android NDK and CMake are not installed on your development machine, please download and install them using SDK manager. For more help visit https://developer.android.com/studio/projects/install-ndk#default-version

	Create a directory named cpp under the main package of the Telemesh app.

[image: cpp directory]

	Put/Create the following two files into the cpp folder.

	CMakeLists.txt

	native-lib.cpp

	CMakeLists.txt build script can be prepared from the following link: https://developer.android.com/studio/projects/configure-cmake#create_script

If you need any help on any stage of work and you want to communicate with us please join our Discord [https://discord.gg/SHG4qrH] channel.

	Any change or addition of credentials has to do under native-lib.cpp file. Copy the following code snippet and paste it into this file.

#include <jni.h>
#include <string>

extern "C" JNIEXPORT jstring JNICALL
Java_com_w3engineers_unicef_telemesh_data_helper_AppCredentials_getBroadCastToken(JNIEnv *env, jobject) {
 std::string broadcast_token= "Here have to set your broadcast token";
 return env->NewStringUTF(broadcast_token.c_str());
}

extern "C" JNIEXPORT jstring JNICALL
Java_com_w3engineers_unicef_telemesh_data_helper_AppCredentials_getBroadCastUrl(JNIEnv *env, jobject) {
 std::string broadcast_url = "Here have to set your broadcast url";
 return env->NewStringUTF(broadcast_url.c_str());
}

extern "C" JNIEXPORT jstring JNICALL
Java_com_w3engineers_unicef_telemesh_data_helper_AppCredentials_getParseUrl(JNIEnv *env, jobject) {
 std::string parse_url = "Here have to set your parse server url";
 return env->NewStringUTF(parse_url.c_str());
}

extern "C" JNIEXPORT jstring JNICALL
Java_com_w3engineers_unicef_telemesh_data_helper_AppCredentials_getParseAppId(JNIEnv *env, jobject) {
 std::string parse_app_id = "Here have to set your parse app id";
 return env->NewStringUTF(parse_app_id.c_str());
}

extern "C" JNIEXPORT jstring JNICALL
Java_com_w3engineers_unicef_telemesh_data_helper_AppCredentials_getAuthUserName(JNIEnv *env, jobject) {
 std::string auth_user_name = "Here have to set your Authenticate name";
 return env->NewStringUTF(auth_user_name.c_str());
}

extern "C" JNIEXPORT jstring JNICALL
Java_com_w3engineers_unicef_telemesh_data_helper_AppCredentials_getAuthPassword(JNIEnv *env, jobject) {
 std::string auth_password = "Here have to set your authenticate password";
 return env->NewStringUTF(auth_password.c_str());
}

extern "C" JNIEXPORT jstring JNICALL
Java_com_w3engineers_unicef_telemesh_data_helper_AppCredentials_getFileRepoLink(JNIEnv *env, jobject) {
 std::string file_repo_link = "Here have to set your file download repo link";
 return env->NewStringUTF(file_repo_link.c_str());
}

extern "C" JNIEXPORT jstring JNICALL
Java_com_w3engineers_unicef_telemesh_data_helper_AppCredentials_getConfiguration(JNIEnv *env, jobject) {
 std::string config_file = "Here have to set a Json file as string like below”;
 return env->NewStringUTF(config_file.c_str());
}

JSON file for configuration:

{
 "config_version_name":"0.0.1",
 "config_version_code":1,
 "token_per_mb":1.0,
 "default_network_type":2,
 "token_guide_version":0,
 "GIFT_DONATE_LINK" : "Here set your gift donate link",
 "wallet_rmesh_available": false,
 "network": [
 {
 "network_type":2,
 "network_name":"Kotti",
 "network_url":"Here set network url",
 "currency_symbol":"ETC",
 "token_symbol":"TMESH",
 "token_address":"Here set your token address",
 "channel_address":"Here set your channel address",
 "gas_price":25000000000,
 "gas_limit":800000,
 "token_amount":0,
 "currency_amount":0
 }
]
}

For more query please join us through Discord [https://discord.gg/SHG4qrH] channel.

	If any new credential is added have to add an API into AppCredentials.java class to access that credentials.

	Delete the following two files from jniLibs package.

	armeabi-v7a

	x86

	Find the externalNativeBuild {} tag from app-level build.gradle and uncomment this line: path src/main/cpp/CMakeLists.txt

	Execute Gradle sync

	Now check the ViperUtil.java class and find the constructor ViperUtil where we use the above credentials

protected ViperUtil(UserModel userModel) {
 try {
 context = MainActivity.getInstance() != null ? MainActivity.getInstance() : TeleMeshApplication.getContext();
 String appName = context.getResources().getString(R.string.app_name);

 String AUTH_USER_NAME = AppCredentials.getInstance().getAuthUserName();
 String AUTH_PASSWORD = AppCredentials.getInstance().getAuthPassword();
 String FILE_REPO_LINK = AppCredentials.getInstance().getFileRepoLink();
 String PARSE_APP_ID = AppCredentials.getInstance().getParseAppId();
 String PARSE_URL = AppCredentials.getInstance().getParseUrl();
 String CONFIG_DATA = AppCredentials.getInstance().getConfiguration();

 SharedPref sharedPref = SharedPref.getSharedPref(context);
 String address = sharedPref.read(Constants.preferenceKey.MY_WALLET_ADDRESS);
 String publicKey = sharedPref.read(Constants.preferenceKey.MY_PUBLIC_KEY);
 String networkSSID = sharedPref.read(Constants.preferenceKey.NETWORK_PREFIX);

 initObservers();

 if (TextUtils.isEmpty(networkSSID)) {
 networkSSID = context.getResources().getString(R.string.def_ssid);
 }

 viperClient = ViperClient.on(context, appName, context.getPackageName(), networkSSID, userModel.getName(), address, publicKey, userModel.getImage(), userModel.getTime(), true)
 .setConfig(AUTH_USER_NAME, AUTH_PASSWORD, FILE_REPO_LINK, PARSE_URL, PARSE_APP_ID, CONFIG_DATA);

 } catch (Exception e) {
 e.printStackTrace();
 }
}

	For wallet design currently, we are using default design from Viper

	In Telemesh we are using Parse server to store analytics data from local mesh.

Please follow this Parse [https://docs.parseplatform.org/android/guide/] installation process in Android.

To configure parse with Telemesh, follow the steps are given below:

Step 1: Add parse server Android SDK version in version.gradle

Step 2: If you want to deploy your own parse server in any platform, you have to update parse server URL and parse server APP-ID in the Telemesh project.

Step 3. You have to add the PARSE_URL and PARSE_APP_ID in the GradleBuildValues interface that located in Constants class.

The sample Parse model (Table) structure is

ParseObject parseObj = new ParseObject(“table_name”);
parseObj.put(“column_name”,”value”);
………….
parseObj.saveInBackground();

The parse server table structure and save/update process located in parseapi package.

Parse Server installation Inside a Docker container

$ git clone https://github.com/parse-community/parse-server
$ cd parse-server
$ docker build --tag parse-server .
$ docker run --name my-parse-server -p 1337:1337 -d parse-server --appId APPLICATION_ID --masterKey MASTER_KEY --databaseURI mongodb://mongo/test

Happy Coding :)

After successful build, install the apk into any Android device (minimum android version Lollipop - 5.0)

and you need to download TeleService apk from Telemesh inside which will provide multihop mesh support into Telemesh.

9. Create branch

Everyone should create their own branch from development branch with convention as
feature/TICKET_NO_TASK_HINT e.g. feature/TEL-123_image_change. Soon he/she
finish his task, he/she should push and request for merge with development branch.

For release a well-tested production ready app should marge from development to
master branch. Android keystore for app release should pass to top level management
via email. Make sure you have putted a TAG for each release on git.

For bugs, a hotfix branch should create first from the release branch with format of
hotfix/TICKET_NO_TASK_HINT and sync between development and master branch.

We are following the GitFlow [https://datasift.github.io/gitflow/IntroducingGitFlow.html] standards

10. Local development environments

You will be glad to know that you can start Telemesh Android application
development on either of the following operating systems −

	Microsoft Windows XP or later version.

	Mac OS X 10.5.8 or later version with Intel chip.

	Linux including GNU C Library 2.7 or later.

Second point is that all the required tools to develop Android
applications are freely available and can be downloaded from the Web.

Following is the list of software’s you will need before you start your
Android application programming.

	Java JDK 8 or later version

	Android Studio 3.3 or later version

11. Development Prerequisites

	11.1. Android Core

	11.2. User Interface

	11.3. Data Management

	11.4. Testing

11.1. Android Core

	Understand Object Oriented Programming (OOP) and various constraints of Java programming language

	Know how to build and run an Android app

	Understand the Android activity lifecycle

	Understand the MVVM architecture of the Android system

	Be able to display a message outside your app’s UI using Notifications

	Understand how to localize an app

	Be able to schedule a background task using JobScheduler

	Be able to use RxJava 2 and basic understanding of various design patterns like Singleton, PubSub
and so on..

11.2. User Interface

	Be able to create an Activity that displays a Layout

	Be able to use Data Binding for view binding

	Be able to construct a UI with ConstraintLayout

	Understand how to display items in a RecyclerView

	
	Be able to bind local data to a RecyclerView list using the Paging library

	and so on..

11.3. Data Management

	Understand how to define data using Room entities

	Be able to access Room database with data access object (DAO)

	Know how to observe and respond to changing data using LiveData

	Understand how to use a Repository to mediate data operations

	Be able to read and parse raw resources or asset files
and so on..

11.4. Testing

	Thoroughly understand the fundamentals of testing

	Be able to write useful local JUnit tests

	Understand the Espresso UI test framework

	Know how to write useful automated Android tests
and so on..

Index

TeleMesh App Architecture

We can use the Message Module to explain this App architecture.

1. In case of an Outgoing message, a message data will be sent from ChatActivity to
the ChatViewModel directly.

	Then the message data will be saved in MessageSourceData .

3. We are using Room [https://developer.android.com/topic/libraries/architecture/room] for storing data. As Room operate in background thread that’s why the message data will
be sent using RxJava [https://www.toptal.com/android/functional-reactive-android-rxjava]. Because it manages both background and foreground
task smoothly. All messages will be stored in the Message Table. All SQL [https://www.khanacademy.org/computing/computer-programming/sql-documentation]
is executed in MessageDao.

4. In the next step, message data will be sent to Communication Layer.
The Source will get the message from MessageDao as RxJava observer is
attached to it. Automatically RmDataHelper will get the message data
because RxJava(Flowable) is being used for getting last inserted data.

5. RmDataHelper will send the message to MeshDataSource and this will
prepare this message data into JSON data to pass via the Mesh Network.

6. In the case of an Incoming message, when any message will be available
in this network, it will be discovered in the application’s
Communication Layer. MeshDataSource will receive this message data and
send to RmDataHelper directly. Source will receive the data from
RmDataHelper. Now message data will be saved in Message table using
MessageDao.

7. Now, View Layer will get the event of the message data.
MessageSourceData will get the message data from MessageDao as RxJava observer
is attached to it. To show message in view level, the message
data will be provided to ChatViewModel automatically using
RxJava(Flowable). After that, message will be seen in UI i.e.:
ChatActivity, through LiveData.

8. RMDataHelper is directly connected with NotificationUtil. When any data
is available to RMDataHelper, notification will be triggered as per
app’s requirements.

[image: app architecture]

 _static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Telemesh Documentation

 		
 Background

 		
 Project’s Goal

 		
 Features

 		
 Project’s Structure

 		
 Telemesh Deployment

 		
 Parse deployment

 		
 Get started

 		
 Project Dependencies

 		
 Development Guideline

 		
 Viper

 		
 Viper Introduction

 		
 Dependency

 		
 UI/UX Support

 		
 Mesh Support

 		
 Wallet Support

 		
 Data plan Support

 		
 Telemesh

 		
 Create branch

 		
 Local development environments

 		
 Development Prerequisites

 		
 Android Core

 		
 User Interface

 		
 Data Management

 		
 Testing

_static/up-pressed.png

_images/mesh.png
. . 3]
The Solution: an overview meﬁﬁersﬁg_

Communication between UNICEFHQ oo

& Cox’s Bazar Teleresh Dashboard offers network statistics and
ability to broadcast info to the distance mesh

CELLULAR NETWORK

ANDROID SMART-PHONE WITH
TELEMESH MESSAGING APP / BUYER

iTERFACE TO NPUT
BROADCAST MESSAGE.
Telemesh app to automatically build mesh

seLLeR networks and offer app features.

WITH INTERNET CONNECTION

seLLer

WITH INTERNET CoNNECTION

An approach to create Equitable and Sustainable Connectivity

_static/ajax-loader.gif

_images/app_architecture.png
TeleMesh App Architecture

View Layer

Data Send Data Saved
Activity [—————>| ViewModel |——>| Source Data
RxJava

Data Showing Data Provided to
(Ex: in Ul (Ex: View Level (Ex:
ChatActivity) (< - -| ChatviewModel) [a------~ MessageSourceData)

Live Data RxJjava

Data Stored

Data Retrieved

Send Last Data Send to

Inserted Data Mesh
[[

RmDataHelper | pyi;peceves | MeshDataSource :

] e
RxJava

Communication Layer

—> Directcall

_images/cpp_directory.png
v Bsrc
» B androidTest
v B main

ssets
v mopp
A CMakeLists.txt
& native-lib.cpp
> B java

